Відновлювана енергетика та системи розосередженої генерації

Відновлювана енергетика — енергетична галузь, що спеціалізується на отриманні та використанні енергії з відновлюваних джерел енергії.

До відновлюваних джерел енергії належать періодичні або сталі потоки енергії, що розповсюджуються в природі і обмежені лише стабільністю Землі як космопланетарного елемента: променева енергія Сонця, вітер, гідроенергія, природна теплова енергія тощо.

У 2013 році близько 21 % світового енергоспоживання було забезпечене з відновлюваних джерел енергії.

Розвиток відновлюваної енергетики має величезне значення з огляду на подальшу долю людства, оскільки горючі корисні копалини, що є основою виробництва енергії на початку 21 ст., мають обмежені запаси, які рано чи пізно будуть вичерпані. Ідеальним для виживання людства був би сталий розвиток, концепція, за якою виробництво й споживання в суспільстві були б збалансовані так, щоб не залежати від ресурсів, доступних лише тимчасово.

Основні технології відновлюваної енергетики

Вітроенергетика

Вітер утворюється в результаті нерівномірного нагрівання поверхні Землі Сонцем. Потоки повітря можуть бути використані для приведення в рух вітрових турбін. Принцип дії всіх вітроустановок один: під напором вітру обертається вітроколесо з лопатями, яке передає крутний момент через систему передач валу генератора, що виробляє електроенергію. Реальний ККД найкращих вітрових коліс досягає 45 % у разі стійкої роботи при оптимальній швидкості вітру. Існують дві принципово різні конструкції вітроенергетичних установок: з горизонтальною і вертикальною віссю обертання.

Сучасні вітрові турбіни мають номінальну потужність від, приблизно, 600 кВт до 5 МВт. Найпоширенішими в комерційному застосуванні, наразі, є повітряні турбіни з номінальною потужністю в діапазоні 1,5—3 МВт. Потужність вітрового потоку пропорційна до площі його перерізу і має кубічну залежність від швидкості вітру, тобто його потужність зростає ще швидше, ніж швидкість вітру. Найкращими для розташування вітрових електростанцій є місцевості з потужними та сталими вітрами, такі як прибережні смуги та вершини гір.

 

Гідроенергетика

Гідроенергетика — область господарсько-економічної діяльності людини а також сукупність природних і штучних підсистем (гідроелектростанцій), що служать для перетворення енергії водного потоку в електричну енергію. На цих електростанціях, як джерело енергії використовується потенціальна енергія водного потоку, першоджерелом якої є Сонце, що випаровує воду, котра згодом випадає на височинах у вигляді атмосферних опадів і стікає вниз, формуючи ріки.

Гідроелектростанції зазвичай будують на ріках, споруджуючи греблі та водосховища. Також можливе використання кінетичної енергії водного потоку на так званих вільнопотокових (дериваційних) ГЕС.

Оскільки густина води приблизно в 800 разів більша за густину повітря, навіть повільний потік води, або слабка океанська течіяможе виробляти істотну кількість енергії.

Станом на 2006 рік гідроенергетика забезпечує виробництво до 88 % відновлюваної і до 20 % всієї електроенергії у світі, встановлена гідроенергетична потужність досягла 777 ГВт.

В останні десятиріччя проводяться широкомасштабні дослідження практичного використання значного потенціалу течій в морях і океанах, які підрозділяють на неперіодичні, мусонні (пасатні) й припливновідпливні. З них в першу чергу розглядається можливість використання енергії головних неперіодичних течій (Гольфстрім, Куросіо та ін.), сумарний енергетичний потенціал яких за різними методиками оцінюється від 5 до 300 млрд кВт.

Сонячна енергетика

Сонячна енергія може бути перетворена в електричну двома основними шляхами: термодинамічним і фотоелектричним.

При термодинамічному методі електричну енергію за рахунок використання сонячної енергії можна отримати використанням традиційних схем в теплових установках, в яких теплота від згоряння палива замінюється потоком концентрованого сонячного випромінювання.

Існують сонячні теплоелектростанції трьох типів:

  • баштового типу з центральним приймачем-парогенератором, на поверхні якого концентрується сонячне випромінювання від плоских дзеркал-геліостатів;
  • параболічного (лоткового) типу, де в фокусі параболоциліндричних концентраторів розміщуються вакуумні приймачі-труби з теплоносієм;
  • тарілкового типу, коли в фокусі параболічного тарілкового дзеркала розташовується приймач сонячної енергії з робочою рідиною.

Сонячна фотоенергетика являє собою пряме перетворення сонячної радіації в електричну енергію. Принцип дії фотоелектричного перетворювача базується на використанні внутрішнього фотоефекту в напівпровідниках і ефекту ділення фотогенерованих носіїв зарядів (електронів і дірок) електронно-дірковим переходом або потенційним бар'єром типу метал-діелектрик-напівпровідник.

В цьому контексті, «сонячна енергія» може позначати енергію, отриману від сонячного випромінення. Існують різні шляхи застосування енергії сонячного випромінення, включно із:

  • Генерування електричної енергії із використанням сонячних елементів.
  • Генерування електричної енергії із використанням концентраторів сонячного випромінення.
  • Генерування електричної енергії шляхом нагрівання стисненого повітря для обертання турбін.
  • Генерування електричної енергії на геосинхронній орбіті із використанням штучних супутників — орбітальної енергетичної системи.

Сонячна теплоенергетика

У сучасному світі сонячна енергія широко використовується для теплопостачання, включаючи гаряче водопостачання і опалення, а також для холодопостачання, кондиціювання повітря, висушування та в інших технологічних процесах.

Системи сонячного теплопостачання класифікуються наступним чином:

  • системи «активного» сонячного теплопостачання, що використовують «активні» установки на основі сонячних колекторів з циркуляцією теплоносія, в якості якого можуть застосовуватися рідина (вода, розчини солей) і газ (повітря);
  • системи «пасивного» сонячного опалення, в яких різні конструкційні елементи споруд використовуються в ролі теплоприймачів сонячної енергії;
  • комбіновані системи сонячного теплопостачання, в яких використані елементи «пасивного» і «активного» сонячного теплопостачання.

Приклади прямого використання теплової енергії від сонячного світла:

  • Обігрівання будівель через систему пасивного обігріву.
  • Нагрівання продуктів харчування в сонячних печах.
  • Нагрівання води або повітря для господарчих потреб в геліоколекторах.
  • Нагрівання та охолодження повітря із використанням сонячних каменів.
  • Кондиціонування повітря.

Геотермальна енергетика

Під геотермальною енергетикою розуміють промислове отримання енергії, зокрема електроенергії, з гарячих джерел, термальних підземних вод. Основним джерелом цієї геотермальної енергії слугує постійний потік теплоти з розжарених надр, направлений до поверхні Землі. Земна кора отримує теплоту в результаті тертя ядра, радіоактивного розпаду елементів, хімічних реакцій.

Розрізняють п'ять основних типів зон розподілу геотермальної енергії:

  • нормальне поверхневе тепло Землі на глибині від декількох десятків до сотень метрів;
  • гідротермальні системи, тобто резервуари гарячої або теплої води, у більшості випадків самовиливної;
  • парогідротермальні системи — родовища пари і самовиливної пароводяної суміші;
  • петрогеотермальні зони або теплота сухих гірничих порід;
  • магма (нагріті до 1300 °C розплавлені гірничі породи).

Проявленням геотермальної теплоти, що має практичне значення, є запаси гарячої води і пари в підземних резервуарах на відносно невеликих глибинах і гейзери, які виходять на поверхню.

Основним показником придатності геотермальних джерел для використання є їх природна температура, за якою вони поділяються на низькотермальні води з температурою 40-70°С, середньотермальні з температурою 70-100°С, високотермальні води і пара з температурою 100—150°С, парогідротерми і флюїди з температурою вище від 150°С.

Геотермальна енергія в низці країн (Угорщина, Ісландія, Італія, Мексика, Нова Зеландія, Росія, США, Японія) широко використовується для теплопостачання та вироблення електроенергії. Так, в Ісландії за рахунок геотермальної енергії забезпечується понад чверть вироблення електроенергії.

У 2008 р. в світі встановлена потужність електрогенеруючих геотермальних установок склала близько 11 млн кВт з виробленням 55 млрд кВт·год електроенергії.

Біопаливо, біоенергетика

Біомаса є одним з найдавніших джерел енергії, однак її використання до недавнього часу зводилося до прямого спалювання при відкритому вогні або в печах і топках з відносно низьким к.к.д. Під біомасою розуміються органічні речовини, які утворюються в рослинах в результаті фотосинтезу і можуть бути використані для отримання енергії, включаючи всі види рослинності, рослинні відходи сільського господарства, деревообробної та інших видів промисловості, побутові відходи.

Біомаса грає суттєву роль в енергобалансах промислово розвинених країн: у США її частка складає 4 %, в Данії — 6 %, в Канаді — 7 %, в Австрії — 14 %, в Швеції — 16 % загального споживання первинних енергоресурсів цих країн. У світі в 2004 р. встановлена потужність електростанцій на біомасі склала 39 млн кВт.

Найпоширенішими технологіями використання біомаси в біоенергетиці є:

  • фізичний метод — пряме спалювання;
  • хімічні методи — піроліз, газифікація, виробництво спиртів і масел для отримання моторного палива;
  • мікробіологічний метод — анаеробна ферментація з утворенням метану.

Значним ресурсом для відновлюваної енергетики є використання хімічної енергії біомас. Перевагою біомас є те, що їх можна безпосередньо перетворювати в паливо для автомобілів та інших машин. Біомаса може безпосередньо вирощуватися для потреб виробництва енергії, тоді її називають біомасою третього покоління, або можуть використовуватися відходи біологічної маси, призначеної для інших потреб, тоді її називають біомасою другого покоління.

Біопаливо, яке може використовуватися в транспортних засобах, виготовляють з олії, тваринних жирів, жирних відходів. За 2011 рік воно забезпечило 2,7 % споживання палива транспортом.

 
 
 
 
 
Теґи